4H-EC3ST Version: 12/2021-1b

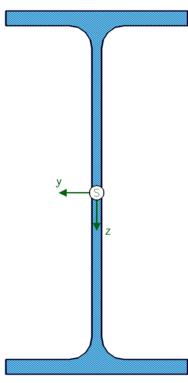
Stabilitätsnachweis EC 3-1-2 (12.10), NA: EC-Standardparameter

1. Eingabedaten

1.1. Allgemeine Angaben

Stabilitätsnachweise nach EN 1993-1-1 c/t-Nachweis (Querschnittsklassifizierung) Biegedrillknicken nach dem Ersatzstabverfahren für My

1.2. Materialsicherheit


Beanspruchbarkeit von Querschnitten $\gamma_{M0} = 1.00$ Beanspruchbarkeit von Bauteilen bei Stabilitätsversagen γ_{M1} = 1.00

1.3. Querschnitt

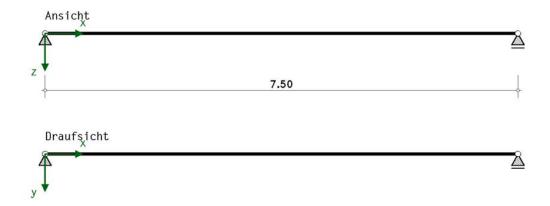
Material: S235 (St37) (E = 210000 N/mm², G = 80769 N/mm², $f_{y,k}$ = 235 N/mm²)

Profil: IPE240

Schnitt Maßstab 1:2.5

1.4. Profilwerte (auf den Schwerpunkt S bezogen)

 $l_y = 3890.0 \text{ cm}^4$, $l_z = 284.0 \text{ cm}^4$, $l_{\zeta} = 3890.0 \text{ cm}^4$, $l_{\eta} = 284.0 \text{ cm}^4$, $\alpha = 0.0^{\circ}$ $I_{\omega} = 37390.0 \ cm^6, \ I_{T} = 12.9 \ cm^4$ $W_y = 324.0 \text{ cm}^3$, $W_z = 47.3 \text{ cm}^3$, $W_{pl,y} = 367.0 \text{ cm}^3$, $W_{pl,z} = 74.0 \text{ cm}^3$ $z_{m,y} = 0.0 \text{ mm}, z_{m,z} = -0.0 \text{ mm}, A = 39.1 \text{ cm}^2$


1.5. Lastangriffspunkt (auf den Mittelpunkt des umgebenden Rechtecks bezogen)

yLast = 0.0 mm (Schwerpunkt) z_{Last} = -120.0 mm (Profiloberkante)

1.6. Statisches System

Alle Lager als Gabellager, Stablänge 7.500 [m]

Kein Zwischenlager in z-Richtung, kein Zwischenlager in y-Richtung

1.7. Knickbeiwerte

 \perp y-Achse: $\beta_y = 1.000$, \perp z-Achse: $\beta_z = 1.000$

Wölbeinspanngrad β₀ = 1.000

1.8. Bemessungsschnittgrößen (Lastkombinationen)

Lk	Typ -y-	Moy,d kNm	Ψ y -	kc,y	ζy -	
1	5	50.00	1.000	0.910	2.222	

Typ (y): Momentenverlaufstyp je Richtung; $M_{0y,cl,\Psi y}$: Bezugsgrößen des Momentenverlaufs; $k_{C,y,\zeta y}$: Beiwerte für die Berechnung

Momentenverlaufstypen

1.9. Drehelastische Bettung durch Trapezbleche Hoesch T 35.1, t_{nom} = 1.00 mm Schubfeldsteifigkeit

ideeller Schubmodul Gs = $10^4 / (K_1 + K_2/L_S) = 24038.5 \text{ kN/m}$

mit $K_1 = 0.149 \text{ m/kN}$, $K_2 = 2.670 \text{ m}^2/\text{kN}$, $L_S = 10.000 \text{ m}$

Schubfeldsteifigkeit S = Gs·Ls = 240384.6 kN

Schubfeldsteifigkeit je Träger Si = S/n = 40064.1 kN mit n = 6

Drehbettung

C₁₀₀ = 5.2 kNm/m, b_{T,max} = 40 mm entsprechend EC 3-1-3, Tab. 10.3 Zeile 1

A = 0.00 kN/m (Auflast, die zwischen Blech und Träger wirkt), bR = 207.0 mm, bτ = 40.0 mm

E = 210000 N/mm², c = 7.500 m (Knicklänge), leff = 203000 mm⁴, s = 2.000 m (Stützweite)

Ср.в: Berechnung nach EN 1993-1-1, Ср.с: Endfeld und gleichsinnige Verdrehung der Träger

 $k_{ba} = 1.440$, $k_{t} = 1.372$, $k_{bR} = 0.894$, $k_{A} = 0.905$, $k_{bT} = 1.000$

 $C_{D,A} = 8.311 \text{ kNm/m}, C_{D,B} = 56.031 \text{ kNm/m}, C_{D,C} = 85.260 \text{ kNm/m}, C_{D} = 6.671 \text{ kNm/m} \Rightarrow IT^* = 59.97 \text{ cm}^4$

 $l_T^* = l_T + \Delta l_T$ mit $l_T = 12.90$ cm⁴, $\Delta l_T = (C_D \cdot c^2)/(G \cdot \pi^2) = 47.07$ cm⁴, $C_D = 6.671$ kNm/m, c = 7.500 m

Nachweise

2.1. Querschnittsklassifizierung

2.1.1. Lastkombination 1 ⇒ Querschnittsklasse 1

Nr	С	t	c/t	ε	σ1	σ 2	Tab 5.2	α	Ψ	kσ	Klasse
	mm	mm	-	-	N/mm ²	N/mm ²		-	-	-	-
1	41.9	9.8	4.28	1.000	147.94	147.94	Eins. 1/1				1
2	41.9	9.8	4.28	1.000	147.94	147.94	Eins. 1/1				1
3	190.4	6.2	30.71	1.000	122.37	-122.37	Beids. 1/1				1
4	41.9	9.8	4.28	1.000	-147.94	-147.94					
5	41.9	9.8	4.28	1.000	-147.94	-147.94					

Druckspannungen haben entsprechend EC 3 ein positives Vorzeichen.

Die Nachweise erfolgen in der vorgegebenen Querschnittklasse 2: Uc/t = 0.428 < 1 ok

2.2. Biegedrillknicken für Biegung um die y-Achse

 $c^2 = 476068 \text{ mm}^2$, Knicklinie $b \Rightarrow \alpha_{LT} = 0.34$, $N_{cr} = 104.64 \text{ kN}$

2.2.1. Lastkombination 1

Momentenbeiwerte für Drehbettung und Schubfeldsteifigkeit:

verbessertes Verfahren: $\zeta_{0\vartheta} = 2.045$, $\zeta_{0S} = 0.133$ für $\beta_W = 1.132$, $\psi = 1.000$

kritisches Moment aus Drehbettung:

 $M_{cr,9} = \alpha_{cr} \cdot M_{Ed} = 128.15 \text{ kNm} \text{ mit } \alpha_{cr} = 2.563, M_{Ed} = 50.00 \text{ kNm}$

kritisches Moment aus Schubfeldsteifigkeit:

 $M_{cr,S} = \alpha_{cr} \cdot M_{Ed} = 1277.30 \text{ kNm}$ mit $\alpha_{cr} = 25.546$, $M_{Ed} = 50.00 \text{ kNm}$

kritisches Moment: $M_{cr} = M_{cr, \vartheta} + M_{cr, S} = 1405.46 \text{ kNm}$

2.2.2. Ausnutzungen

Lk	Mcr	λLT	f	Фцт	χ LT	χLT,mod	MEd	Mb,Rd	U
	kNm	-	-	-	m	m	kNm	kNm	-
1	1405.46	0.248	1.000	0.497	1.000	1.000	50.00	86.25	0.580

max U = 0.580 < 1 ok

3. Endergebnis

Maximale Ausnutzung U = 0.580 < 1 ok c/t-Ausnutzung U = 0.428 < 1 ok

Nachweis erbracht

4. Ausgewählte Bemessungsparameter des nationalen Anhangs DIN EN 1993-1-1 (EC 3, Hochbau), NA EC-Standardparameter

Kapitel	Wert	Bedeutung
6.1(1)	ständige/vorüberg. Situation	Teilsicherheitsbeiwerte für Baustahl
	γ MO = 1.00	Querschnittsversagen
	γ M1 = 1.00	Stabilitätsversagen
	γ M2 = 1.25	Bruchversagen infolge Zug
	außergewöhnliche Situation	Teilsicherheitsbeiwerte für Baustahl
	γ MO = 1.00	Querschnittsversagen
	γ M1 = 1.00	Stabilitätsversagen
	γ M2 = 1.25	Bruchversagen infolge Zug
6.3.2.2(2)	Faktor f zur Modifizierung	Biegedrillknicken
	von χ _{LT} nicht ansetzen	Allgemeiner Fall
6.3.2.3(1)	λ LT,0 = 0.40	Schlankheitsgrad Gl. (6.75)
	$\beta = 0.75$	Korrekturfaktor Gl. (6.75)
6.3.2.3(2)	Beiwert kc aus Tabelle 6.6	Berechnung des Abminderungsfaktors χ _{LT}

DIN EN 1993-1-2 (EC 3, Brandfall), NA EC-Standardparameter

Kapite1	Wert	Bedeutung
2.3(1)	Brandfall	Teilsicherheitsbeiwert für
	γ M,fi = 1.00	mechanisches Versagen