
geschraubter Stirnplattenstoß

EC 3-1-8 (12.10), NA: Deutschland

Stahlsorte

Stahlgüte S235

Schrauben

Schrauben mit großer Schlüsselweite sind mit der Vorspannkraft Fp,c (s.u.) vorzuspannen !!

Festigkeitsklasse 8.8, Schraubengröße M12

große Schlüsselweite (HV-Schraube), planmäßig vorgespannt

Regelvorspannkraft F_{p,C}* = 0.7·f_{yb}·A_s = 37.8 kN, Gewinde in der Scherfuge

Verbindung

Stirnblech: Dicke tp = 20.0 mm, Breite bp = 200.0 mm, Länge lp = 200.0 mm

Träger: gespiegeltes Profil L 150 X 100 X 10

Träger-Stirnblech: umlaufende Kehlnaht, Nahtdicke a = 7.0 mm

Koordinaten links oben des umgebenden Rechtecks des Trägerprofils bei xp = 150.0 mm, yp = 175.0 mm

Koordinaten des Trägerschwerpunkts auf dem Stirnblech xs = 126.6 mm, ys = 127.0 mm

Schrauben:

Koordinaten der Schraubenachsen:

 $x_1 = 25.0 \text{ mm}, y_1 = 25.0 \text{ mm}$

 $x_2 = 175.0 \text{ mm}, y_2 = 25.0 \text{ mm}$

 $x_3 = 25.0 \text{ mm}, y_3 = 175.0 \text{ mm}$

 $x_4 = 175.0 \text{ mm}, y_4 = 175.0 \text{ mm}$

 $x_5 = 25.0 \text{ mm}, y_5 = 80.0 \text{ mm}$

 $x_6 = 85.0 \text{ mm}, y_6 = 25.0 \text{ mm}$

Berechnung

Nachweisführung:

Schnittgrößenermittlung (FEM) und Bemessung

Nachweis des Stirnblechs mit dem plastischen Verfahren

Nachweis des Trägerquerschnitts mit dem plastischen Verfahren

Nachweis der Schweißnähte mit dem richtungsbezogenen Verfahren

Nachweis der Schrauben, die Abstände werden überprüft

FEM-Berechnung:

Die Schrauben werden plastisch berechnet, Federkonstante der Schrauben cf = 4338.0 kN/cm

plastische Grenzkraft Ft,f = ft,f·Ft,Rd = 46.1 kN, ft,f = 0.950, Ft,Rd = 48.6 kN, wirksame Bruchdehnung εt,f = 6.0% Vorspannkraft Fp.c = 37.8 kN

rechnerischer Bettungsmodul des Stirnblechs cb = 21000.0 kN/cm³

Anzahl / Größe der finiten Elemente je Richtung n_x / $\Delta x = 20$ / 10.0 mm, n_y / $\Delta y = 20$ / 10.0 mm

max. 50 Iterationsschritte bei einer Toleranzgrenze von 5‰

Schnittgrößen

Lk	Ned kN	My,Ed kNcm	V z,Ed KN	Mz,Ed kNcm	V y,Ed kN	M x,Ed kNcm
$\overline{1}$	-17.9	-88.2	16.4	-375.5	-1.7	-1.4
2	1.0	-29.9	0.6	-88.6	-0.4	111.3
3	-11.3	312.8	-0.1	-607.2	-2.9	79.0
4	-11.4	-722.9	24.4	424.7	2.2	-3.8
5	-5.2	-208.1	1.0	316.8	1.5	0.0
6	-14.3	-427.0	23.7	-191.5	-0.7	107.7
7	-11.2	-735.0	24.4	407.2	2.2	-4.8
8	-6.4	184.8	0.1	-398.3	-1.9	113.0
9	-10.1	-751 . 7	24.4	318.1	1.8	106.7

Lk	Ned KN	My,Ed KNcm	V z,Ed kN	Mz,Ed kNcm	V y,Ed KN	M x,Ed kNcm
10	-12.2	333.0	-0.2	-532.6	-2.6	1.6
11	-10.9	-629.3	17.6	473.8	2.4	-3.0

Materialsicherheitsbeiwerte

Beanspruchbarkeit von Querschnitten γ_{M0} = 1.00

Beanspruchbarkeit von Schrauben, Schweißnähten, Blechen auf Lochleibung γμ2 = 1.25

Berechnung

Ausnutzungen

Lk	U_p	U_{σ}	Ub	U_{wt}	$U_{t,s}$	$U_{vt,s}$	$U_{\mathbf{b},\mathbf{s}}$	$U_{\mathbf{q}}$	U _{c/t}	Uw	U
	-	-	-	-	-	-	-	-	-	-	-
1	0.122	0.084	0.122	0.029	0.804	0.676	0.035	0.391	0.498	0.491	0.804
2	0.077	0.029	0.077	0.027	0.778	0.635	0.023	0.724	0.750	0.107	0.778
3	0.226	0.226	0.123	0.046	0.934	0.695	0.030	0.857	0.750	0.883	0.934
4	0.183	0.183	0.114	0.032	0.839	0.774	0.064	0.682	0.585	0.858	0.858
5	0.106	0.037	0.106	0.027	0.779	0.574	0.005	0.369	0.142	0.458	0.779
6	0.134	0.073	0.134	0.027	0.780	0.682	0.037	0.726	1.000	0.204	1.000*
7	0.187	0.187	0.111	0.033	0.842	0.776	0.065	0.674	0.580	0.849	0.849
8	0.109	0.109	0.100	0.031	0.830	0.663	0.030	0.853	0.750	0.573	0.853
9	0.193	0.193	0.100	0.033	0.847	0.703	0.042	0.923	0.557	0.774	0.923
10	0.176	0.176	0.110	0.039	0.907	0.659	0.008	0.624	0.750	0.792	0.907
11	0.149	0.149	0.123	0.030	0.813	0.710	0.045	0.677	0.607	0.846	0.846

Up: Ausnutzung der Stirnplatte; Uc: Ausnutzung der Stirnplatte aus Spannung; Up: Ausnutzung der Stirnplatte aus Kontaktpressung Uwt.s: Ausnutzung der Schrauben aus Dehnung; Ut.s: Ausnutzung der Schrauben aus Zug; Uvt.s: Ausnutzung der Schrauben aus Abscheren mit Zug Ub.s: Ausnutzung der Schrauben aus Lochleibung; Uq: Spannungsausnutzung des Trägers; Uct: c/t-Ausnutzung des Trägers Uw: Ausnutzung der Schweißnähte; U: Gesamtausnutzung

*) maximale Ausnutzung

Endergebnis

Maximale Ausnutzung [Lk 3] max U = 0.934 < 1 ok.

Nachweis erbracht

Vorschriften

DIN EN 1990, Eurocode 0: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010, Ausgabe Dezember 2010 DIN EN 1990/NA, Nationaler Anhang zur DIN EN 1990, Ausgabe Dezember 2010

DIN EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau;

Deutsche Fassung EN 1993-1-1:2005 + AC:2009, Ausgabe Dezember 2010

DIN EN 1993-1-1/NA, Nationaler Anhang zur DIN EN 1993-1-1, Ausgabe Dezember 2010

DIN EN 1993-1-8, Eurocode 3: Bemessung und Konstruktion von Stahlbauten -

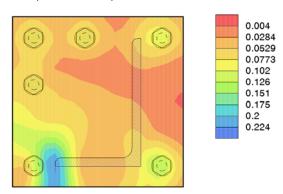
Teil 1-8: Bemessung von Anschlüssen;

Deutsche Fassung EN 1993-1-8:2005 + AC:2009, Ausgabe Dezember 2010

DIN EN 1993-1-8/NA, Nationaler Anhang zur DIN EN 1993-1-8, Ausgabe Dezember 2010

Detaillierte Ausgabe von Lk 3 (maßgebend)

Lk 3: $N_{Ed} = -11.3 \text{ kN}$, $M_{y,Ed} = 312.8 \text{ kNcm}$, $V_{z,Ed} = -0.1 \text{ kN}$, $M_{z,Ed} = -607.2 \text{ kNcm}$, $V_{z,Ed} = -607.2 \text{ kNcm}$


Stirnblech

Bemessungsgrößen: N = -11.31 kN, $M_y = 3.13 \text{ kNm}$, $M_z = -6.07 \text{ kNm}$

Verformungen uz [mm], abhebend positiv min $u_z = -0.00$ mm, max $u_z = 0.05$ mm

0.00544 0.0109 0.0163 0.0218 0.0272 0.0327 0.0381 0.0436 0.049

Ausnutzung der Stirnplatte Up $\text{min } U_p = 0.004, \text{ max } U_p = 0.226$

Ausnutzung der Stirnplatte

Kno	х	у	uz	Uσ	U_b	Up
	mm	mm	mm			
124	50.0	180.0	0.046	0.226		0.226
147	60.0	200.0	0.049	0.188		0.188

x,y: Knotenkoordinaten; uz: Verformungen (abhebend positiv); U $_\sigma$: Ausnutzung aus Moment mit Querkraft; U $_{
m D}$: Ausnutzung aus Kontaktpressung Up: Ausnutzung der Stirnplatte

Zugkraft in den Schrauben

	х	у	Wt	Ft	εwt	U_{wt}
	mm	mm	mm	kΝ	%	
1	25.0	25.0	-0.000	37.77	0.159	0.027
2	175.0	25.0	-0.000	37.77	0.159	0.027
3	25.0	175.0	0.023	45.33	0.274	0.046
4	175.0	175.0	-0.000	37.77	0.159	0.027
5	25.0	80.0	-0.001	37.78	0.159	0.027
6	85.0	25.0	-0.000	37.77	0.159	0.027

x,y: Schraubenkoordinaten; wt: Verformung (Zug positiv); Ft: Schraubenkraft; Ewt: Dehnung Uwt: Ausnutzung aus Dehnung

Ausnutzung der Stirnplatte [Kno 124] Umax = 0.226 < 1 ok. Ausnutzung der Schrauben aus Dehnung [Schraube 3] Umax = 0.046 < 1 ok.

Schrauben

Bemessungsgrößen: max $F_t = 45.33 \text{ kN}$, $V_z = -0.14 \text{ kN}$, $V_y = -2.90 \text{ kN}$, $M_x = 0.79 \text{ kNm}$

Nachweis der Schrauben

Utp Ausnutzung aus	Zug/Durchstanzen, U√t Au	ısnutzung aus Abscheren	mit Zug, Ub Ausnutzung a	aus Lochleibung, U Ausnutzung der Schrauben
Schraube 1	$U_{tp,1} = 0.778$	$U_{vt,1} = 0.602$	$U_{b,1} = 0.014$	$U_1 = 0.778$
Schraube 2	$U_{tp,2} = 0.778$	$U_{vt,2} = 0.612$	$U_{b,2} = 0.017$	$U_2 = 0.778$
Schraube 3	$U_{tp,3} = 0.934$	$U_{vt,3} = 0.695$	$U_{b,3} = 0.008$	$U_3 = 0.934$
Schraube 4	$U_{tp,4} = 0.778$	$U_{vt,4} = 0.657$	$U_{b,4} = 0.030$	$U_4 = 0.778$
Schraube 5	$U_{tp,5} = 0.778$	$U_{vt,5} = 0.605$	$U_{b,5} = 0.010$	$U_5 = 0.778$
Schraube 6	$U_{tp,6} = 0.778$	$U_{vt,6} = 0.570$	$U_{b,6} = 0.003$	$U_6 = 0.778$
Gesamt Max:	$U_{tp} = 0.934$	$U_{vt} = 0.695$	$U_b = 0.030$	U = 0.934 < 1 ok.

Ausnutzung der Schrauben [Schraube 3] U_{max} = 0.934 < 1 ok.

Träger

plastischer Querschnittsnachweis für N = -11.31 kN, My = 0.41 kNm, Vz = 1.04 kN,

 $M_z = -6.82 \text{ kNm}, V_y = -2.71 \text{ kN}, M_x = 0.79 \text{ kNm}$

zul. Normal-/Schubspannung: zul σRd = 23.50 kN/cm², zul τRd = 13.57 kN/cm²

Untergurt: Querkraft $V_U = -2.90$ kN, Torsion $T_{pU} = 0.33$ kNm, Schubspannung $\tau_0 = 6.94$ kN/cm² $\Rightarrow U_{\tau_1 U} = 0.511$

Gurtbiegung $M_{\sigma,U} = -6.28$ kNm, Biegespannung $\sigma_U = 13.89$ kN/cm² $\Rightarrow U_{\sigma,U} = 0.688$

Grenznormalkräfte N_{max,U} = -29.91 kN, N_{min,U} = -171.21 kN

Querkraft Vs = -0.14 kN, Torsion Tps = 0.46 kNm, Schubspannung $\tau s = 6.82$ kN/cm² $\Rightarrow U_{\tau} s = 0.503$ Steg:

Grenznormalkräfte N_{max,s} = 284.37 kN, N_{min,s} = -284.37 kN

Hauptbieg.: Normalkraft N = -11.31 kN, Grenznormalkräfte N_{max} = 254.46 kN, N_{min} = -455.58 kN \Rightarrow UN = 0.025

Moment M_y = 3.13 kNm, Grenzmomente M_{y,max} = 8.02 kNm, M_{y,min} = -19.29 kNm \Rightarrow U_{My} = 0.390

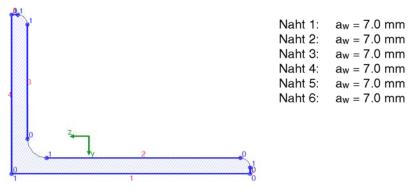
Gesamt (ggf. aus Laststeigerung): max U = 0.857 < 1 ok.

Ausnutzungen: Tragfähigkeit $U_{\sigma} = 0.857 < 1$ ok., c/t-Verhältnis $U_{c/t} = 0.750 < 1$ ok.

Ausnutzung des Trägers $max(U_{\sigma}, U_{c/t}) = 0.857 < 1$ ok.

Schweißnähte

Bemessungsgrößen: $N = -11.31 \ kN, \ M_y = 3.13 \ kNm, \ V_z = -0.14 \ kN, \ M_z = -6.07 \ kNm,$ $V_y = \text{-}2.90 \ kN, \ M_x = 0.79 \ kNm$


 $l_w = 150.0 \ mm$

 $l_w = 122.0 \text{ mm}$

 $l_w = 72.0 \text{ mm}$

 $l_w = 4.0 \ mm$

 $l_w = 100.0 \text{ mm}$ $I_w = 4.0 \ mm$

Max: $\sigma_{1,w,Ed} = 31.79 \text{ kN/cm}^2 < f_{1,w,Rd} = 36.00 \text{ kN/cm}^2$, $\sigma_{2,w,Ed} = 15.90 \text{ kN/cm}^2 < f_{2,w,Rd} = 25.92 \text{ kN/cm}^2 \implies U_w = 0.883 < 1 \text{ ok.}$

Ausnutzung der Schweißnähte U_{max} = 0.883 < 1 ok.

Ausnutzung Lk 3 $U_{max} = 0.934 < 1$ ok.