
POS. 2: STÜTZENFUSS MIT FUSSPLATTE

4H-EC3FP Version: 5/2013-1a

Stahlstützenfuß mit Fußplatte

Stahlnachweise nach DIN EN 1993-1:2010-12 mit NA-Deutschland

Draufsicht Fußplatte Maßstab 1:10

Stützenquerschnitt

frei definiertes Profil: Querschnitt 19, der Güte S355

 $b_x = 700 \text{ mm}$ $b_y = 700 \text{ mm}$ t = 20 mm, der Güte S235

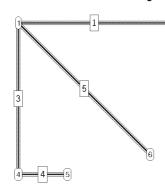
Mörtel fuge

 $t_F = 30 \text{ mm}$

Untergrund/Bettung

Entsprechend des Betons C25/30

Schubdübe1


genormtes Profil: MSH140X140X6.3, der Güte S355

8 Anker, FK 4.8, M22, ohne Schaft mit einer Länge von 200 mm

Positionen auf der Fußplatte:

Nr	x'	у'	Nr	x'	у'
	mm	mm		mm	mm
1	-300	-300	5	300	0
2	0	-300	6	-300	300
3	300	-300	7	0	300
4	-300	0	8	300	300

Querschnittsbeschreibung des Stützenprofils (Querschnitt 19)

Knot	Knotenkoordinater								
Nr.	х,	у'							
-	mm	mm							
1	-244.0	-244.0							
2	244.0	-244.0							
3	244.0	-154.0							
4	-244.0	244.0							
5	-86.0	244.0							
6	180.0	180.0							

Linienelemente

Nr.	KnoA	KnoE	Dicke
-	-	-	mm
1	1	2	12.0
2	2	3	12.0
3	1	4	12.0
4	4	5	12.0
5	1	6	12.0

1. Belastung

Bemessungswerte der Stützenlast 1.1.

Angriffspunkt im Schwerpunkt der Stütze

LK	Nst,d kN	Hx,St,d	Hy,St,d	Mx,St,d kNm	M y,st,d kNm	Bemessungssit.
	KIN	KIN	KIN	KINIII	KINIII	
1	2232.00	12.80	4.30	0.00	0.00	ständig
2	-303.00	-1.60	166.50	0.00	0.00	ständig
3	1647.00	42.70	-1.50	0.00	0.00	ständig
4	-302.00	-2.40	-166.70	0.00	0.00	ständig

2. **Nachweis**

2.1. Materialsicherheitsbeiwerte

Bemessungssit.	γM0	γM2	γc
ständig	1.10	1.10	1.50

2.2. Schweißnaht zwischen Stützenschaft und Fußplatte

Bemessung nach dem vereinfachten Verfahren entsprechend Abschnitt 4.5.3.3

 $F_{w,Ed} = \sigma_{w,v} \cdot a_w$ $F_{w,Rd} = f_{vw,d} \cdot a_w$ $\begin{aligned} &f_{VW,d} = (f_U/3^{0.5})/(\beta_W\cdot\gamma_{m2}) \\ &U = F_{W,Ed}/F_{W,Rd} \end{aligned}$

Die Verbindung wird mit einer umlaufenden Kehlnaht ausgeführt. Die Normalkraft wird zu 100 % durch die Schweißnaht übertragen.

LK	aw	σw,max	τw,max	σw,v,max	Fw,Ed	Fw,Rd	U
	mm	kN/cm²	kN/cm²	kN/cm²	kN/cm	kN/cm	-
1	4	15.37	0.25	15.37	6.15	9.45	0.65
2	4	-2.71	-3.25	4.23	1.69	9.45	0.18
3	4	11.49	0.30	11.49	4.59	9.45	0.49
4	4	-2.82	-3.31	3.94	1.58	9.45	0.17

Maximale Nahtdicke $a_{w,max} = 4 \text{ mm}$

Maximale Ausnutzung U = 0.65 < 1.00

 $\textbf{a}_{W} \textbf{- Schweißnahtdicke} \qquad \sigma_{W,max} \textbf{- max. Normalspannung in der Schweißnaht} \qquad \tau_{W,max} \textbf{- max. Schubspannung in der Schweißnaht}$ σ_{w,v,max} - max. Vergleichsspannung in der Schweißnaht F_{w,Rd} - Tragfähigkeit der Schweißnaht je Längeneinheit U - Ausnutzung

2.3. FE-Berechnung

Die Berechnung der Pressungen unter der Fußplatte und der maßgebenden Schnittgrößen in der Fußplatte erfolgt durch eine FEM-Berechnung mit Steifezifferverfahren. Die Anfangsbettung der Platte ergibt sich aus dem E-Modul des Betons unter der Fußplatte. Für die Flächenbettung gilt Zugfederausschaltung. Die Änker werden durch Punktfedern berücksichtigt, die nur auf Zug wirken.

Die Platte wird in 30 Elemente in X-Richtung und 30 Elemente in Y-Richtung eingeteilt.

Die Betonpressung wird begrenzt auf die zulässige Teilflächenpressung mit lim $\sigma_{\text{C,d}} = f_{\text{Rd,u}}$.

Die Ersatzfeder für die Anker wird angesetzt mit $c = E \cdot A/1 = 3181.50 \text{ kN/cm}$.

2.3.1. Spannungen in der Fußplatte (Elast.-Plast.)

Schnittgrößen

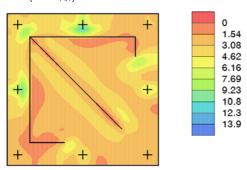
	001111	John 1 dogs oben							
LK XFp YFp		m _{XX}	туу	mxy	Vx	Vy			
		cm	cm	kNcm/cm	kNcm/cm	kNcm/cm	kN/cm	kN/cm	
	1	8.2	61.8	4.37	4.37	-0.05	3.44	-3.44	
	2	33.8	61.8	-2.52	-14.13	-1.36	0.67	8.99	
	3	8.2	61.8	3.20	3.20	-0.03	2.52	-2.51	
	4	8.2	36.2	-13.20	-2.41	-1.20	-8.46	-0.60	

Spannungen und Ausnutzungen

 $\sigma_{PI,V} = \left(\sigma_X^2 + \sigma_Y^2 - \sigma_X \cdot \sigma_Y + 3 \cdot \left(\tau_{Xy}^2 + \tau_{Xz}^2 + \tau_{yz}^2\right)\right)^{0.5}$

 $\sigma Rd = f_y/\gamma M0$

 $U = \sigma PI, V/\sigma Rd$


LK	XFp	У Fр	σP1,V	σRd	U
	cm	cm	kN/cm²	kN/cm²	-
1	8.2	61.8	6.07	21.36	0.28
2	33.8	61.8	15.39	21.36	0.72
3	8.2	61.8	4.44	21.36	0.21
4	8.2	36.2	14.37	21.36	0.67

Maximale Ausnutzung U = 0.72 < 1.00

 x_{Fp}/y_{Fp} - Koordinaten auf der Fußplatte m_{xx}/m_{yy} - Momente m_{xy} - Drillmoment v_x/v_y - Querkraft σΡΙ, V - plastische Vergleichsspannung σRd - Grenznormalspannung U - Ausnutzung

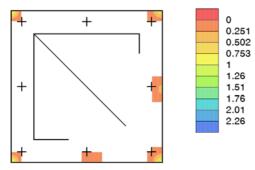
Spannungsverteilung - σ_{P1}, v [kN/cm²]

LK 2 (max σPI,V)

2.3.2. Betonpressung unter der Fußplatte

Der zulässige Anteil der Druckfläche mit Betonpressungen größer als der Bemessungswert der Betondruckfestigkeit (fcd) beträgt 30%.

LK	lim σ _{c,d}	ADruck	σc,max	σc,m	fcd	U	$\sigma_c(A_D)>f_{cd}$
	kN/cm²	cm ²	kN/cm ²	kN/cm ²	kN/cm ²	-	%
1	4.25	4513.4	2.26	0.49	1.42	0.35	10.13
2	4.25	76.2	1.29	0.46	1.42	0.33	7.14
3	4.25	4486.2	1.65	0.37	1.42	0.26	0.73
4	4.25	65.3	1.17	0.57	1.42	0.40	0.00


Maximale Ausnutzung U = 0.40 < 1.00

Maximaler Anteil der Betonpressung mit σ_{C} > fcd = 10.13 < 30.00

ADruck - Fläche mit Betonpressungen oc.max - maxmimale Betonpressung oc.m - mittlere Betonpressung U - Ausnutzung

Pressungsverteilung [kN/cm²]

LK 4 (max σc,m)

2.3.3. Ankerzugkräfte

 $F_{t,Rd} = k2 \cdot f_{ub} \cdot A_s / \gamma M2$ $U = F_{t,Ed,max} / F_{r,Rd}$

Spannungsquerschnitt für M22: $A_s = 3.03 \text{ cm}^2$ Es werden keine Senkschrauben verwendet: k2 = 0.90

LK	Ft,Ed,1 KN	Ft,Ed,2 KN	Ft,Ed,3 KN	Ft,Ed,4 KN	Ft,Ed,5 KN	Ft,Ed,6 kN	Ft,Rd kN	Umax -
1							99.16	0.00
2	48.21	91.08	23.50	82.15	36.26	12.04	99.16	0.92
3							99.16	0.00
4	29.16	69.10	17.36	85.66	39.37	29.50	99.16	0.86

LK	Ft,Ed,7	Ft,Ed,8	Ft,Rd	Umax
	kN	kN	kΝ	-
1			99.16	0.00
2	35.05	10.11	99.16	0.35
3			99.16	0.00
4	51.53	17.25	99.16	0.52

Maximale Ausnutzung U = 0.92 < 1.00

fub - Zugfestigkeit des Schraubenwerkstoffes 💍 Ft,Ed,i - Zugkraft des Ankers 📉 Ft,Rd - Grenzzugkraft der Anker U_{max} - max. Ausnutzung

2.4. Schubdübel zur Einleitung der Horizontalkraft in das Fundament

Gesamtlänge 1 = 12.0 cmLänge im Beton $1_c = 9.0$ cm

2.4.1. Betonpressung

 $\sigma_{C} = V_{Ed}/(I_{C}\cdot b)$ $U = \sigma_{C,max}/f_{Cd}$

LK Ш σc,x $\sigma_{\text{c,y}}$ f_{cd} N/mm^2 N/mm^2 N/mm^2 1 0.61 1.83 14.17 0.13 2 13.21 0.13 14.17 0.93 3 0.21 6.10 14.17 0.43 4 13.23 0.19 | 14.17 | **0.93**

Maximale Ausnutzung U = 0.93 < 1.00

 $\sigma_{C,X}$ - Betonpressung über x-Richtung $\sigma_{C,Y}$ - Betonpressung über y-Richtung U - Ausnutzung

2.4.2. Spannungen am Anschluss der Fußplatte

 $\sigma_{V,Ed} = (\sigma_{Ed}^2 + 3 \cdot \tau_{Ed}^2)^{0.5}$ $\sigma Rd = \mathbf{f}_y / \gamma M0$ $\mathbf{u} = \sigma_{V,Ed}/\sigma_{Rd}$

	LK	M _x ,Ed	My,Ed	σEd	τEd	σv,Ed	σ Rd	U
		kNcm	kNcm	kN/cm²	kN/cm²	kN/cm²	kN/cm²	-
-	1	23.65	70.40	0.67	-0.88	1.53	32.27	0.05
	2	1248.75	-12.00	9.03	-11.43	19.80	32.27	0.61
	3	-8.25	234.85	-1.74	-2.93	5.08	32.27	0.16
	4	-1250.25	-18.00	-9.09	11.45	19.83	32.27	0.61

Maximale Ausnutzung U = 0.61 < 1.00

σ_{V,Ed} - Vergleichsspannung σ_{Rd} - Grenznormalspannung τ_{Rd} - Grenzschubspannung U - Ausnutzung

2.4.3. Schweißnaht zwischen Fußplatte und Schubdübel

Bemessung nach dem richtungsbezogenen Verfahren entsprechend Abschnitt 4.5.3.2

 $\sigma V, w, Ed = (\sigma_{\perp}^2 + 3 \cdot \tau_{\perp}^2 + 3 \cdot \tau_{||}^2)0.5,$

 $f_{1.w.Rd} = f_u/(\beta_{w.\gamma}M_2)$

 $f_{2,w,Rd} = 0.9 f_u/\gamma_{M2}$

 $U = \max\{ \sigma_{V,w,Ed}/f_{1,w,Rd}, \sigma_{\perp}^2/f_{2,w,Rd} \}$

Die Verbindung wird mit einer umlaufenden Kehlnaht ausgeführt.

Die Normalkraft wird zu 100 % durch die Schweißnaht übertragen.

Mindestwert der Schweißnahtdicke $a_{min} = 4 \text{ mm}$

LK	aw	σ⊥	τ⊥	τιι	σV,w,Ed	f1,w,Rd	f2,w,Rd	U
	mm	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	kN/cm²	
1	4	-0.61	-0.61	1.26	2.50	40.91	29.45	0.06
2	4	8.01	8.01	16.34	32.51	40.91	29.45	0.79
3	4	1.55	1.55	4.19	7.89	40.91	29.45	0.19
4	4	8.06	8.06	-16.36	32.59	40.91	29.45	0.80

Maximale Nahtdicke $a_{w.max} = 4 \text{ mm}$

Maximale Ausnutzung U = 0.80 < 1.00

a_w - Schweißnahtdicke $-\sigma_\perp^2$ - Normalspannungen senkrecht zur Naht $-\tau_\perp^2$ - Schubspannungen senkrecht zur Naht $\tau_{\rm H}^2$ - Schubspannungen parallel zur Naht $\,$ U - Ausnutzung

3. Zusammenfassung

Alle geführten Nachweise und Bemessungen konnten erfolgreich durchgeführt werden.

Maximale Ausnutzungen bei den einzelnen Nac	hweisen
Schweißnaht zwischen Stütze und Fußplatte	65%
Spannungen in der Fußplatte	72%
Pressungen unter der Fußplatte	40%
Ankerzugkräfte	92%
Schubdübe1	93%

