
POS. 50: ECKSTÜTZE UNTER DECKENPLATTE MIT AUSSPARUNG

4H-STANZ Version: 8/2012-2d

Durchstanznachweis für Stütze unter Deckenplatte

Nach DIN EN 1992-1-1:2011-01 mit Nationalem Anhang Deutschland (DIN EN 1992-1-1/NA:2013-04)

Maßstab 1:50

verankerte Zugbewehrung

 $a_{s,zug,x} = 31.42 \text{ cm}^2/\text{m}$ $a_{s,zug,y} = 31.42 \text{ cm}^2/\text{m}$

Betonfestigkeitsklasse C35/45 Betonstahlsorte B500A

1. Belastung

1.50

Bemessungswerte der Durchstanzlast im Schwerpunkt der Lasteinleitung

LK	Bezeichnung	Bemessungssit.	V Ed kN	MEd,x kNm	M Ed.y kNm	
1	Volllast	ständig	400.00	100.00	50.00	
2	Sonder last	außergew.	650.00	300.00	150.00	

 V_{Ed} - Querkraft $M_{Ed,x}/M_{Ed,y}$ - Momente

2. Materialsicherheitsbeiwerte

Bemessungssit.	γc	γs	
ständig und vorübergehend	1.50	1.15	
außergewöhnlich	1.30	1.00	

3. Einwirkung im kritischen Rundschnitt

 $VEd,crit = \beta \cdot VEd/(u_1 \cdot d)$ $\beta = 1 + \text{sqrt}((k_x M_{Ed,x} / V_{Ed} \cdot u_1 / W_{1,x})^2 + (k_y M_{Ed,y} / V_{Ed} \cdot u_1 / W_{1,y})^2) \ge 1.10$

 $W_1 = \int |e| \; dl \quad mit \; dl: Differential \; des \; Umfangs \\ e : Abstand \; von \; dl \; zur \; Achse \; von \; M_{Ed}$

Beiwert zur Ermittlung der Schubspannungen aus Momentenbeanspruchung (nach [1], Tabelle 6.1)

 $c_1 = c_2 = 0.45 \Rightarrow k_X = k_Y = 0.6$

Abstand und Umfang des kritischen Rundschnittes

 $a_{r,1} = 2 \cdot d = 38 \text{ cm} \Rightarrow u_1 = 3.85 \text{ m}$

(unwirksamer Bereich infolge Lochflächen $du_{Lf} = 0.15 \text{ m}$)

Widerstandsmoment entlang des kritischen Rundschnittes

- bei Momentenbelastung um die x-Achse $W_{1,x} = 1.9375 \text{ m}^2$
- bei Momentenbelastung um die y-Achse $W_{1,y} = 2.707 \text{ m}^2$

Versatz zwischen Rundschnitt- und Stützenschwerpunkt

 $\Delta x = -0.08 \text{ m}$

 $\Delta y = 0.17 \text{ m}$

Maßgebende Schubspannung im kritischen Rundschnitt

LK	V Ed kN	MEd,x,Sp kNm	MEd,y,Sp kNm	β -	VEd,crit N/mm²
1 2	400.00 650.00	33.23 191.50	81.89 201.81	1.20	0.657 1.281

W₁ - Widerstandsmoment entlang des kritischen Rundschnittes

 $M_{Ed,x,Sp}/M_{Ed,y,Sp}$ - Momente bezügl. Schwerpunkt des Rundschnittes vEd,crit - Maßgebende Schubspannung im kritischen Rundschnitt

β - Lasterhöhungsfaktor aus exzentrischer Belastung

4. Durchstanzwiderstand im kritischen Rundschnitt

 $v_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{I,zug} \cdot f_{ck})^{1/3} \ge v_{min} \left[N/mm^2 \right]$

 $C_{Rd,C} = 0.18/\gamma_C$

 $k = 1 + sqrt(200/d) \le 2.0 \text{ mit d [mm]}$

 $\rho_{l,zug,max} = Minimum von (0.02, 0.5 f_{cd}/f_{yd})$

 ρ 1,zug = sqrt(ρ 1x,zug· ρ 1y,zug) $\leq \rho$ 1,zug,max ν min = 0.0525/ γ c·k3/2·fck1/2 für d \leq 600 mm

Maßstabsfaktor

 $k = 1 + sqrt(200/190) = 2.03 > 2 \implies k = 2$

Längsbewehrungsgrad der verankerten Zugbewehrung

Mittelwert aus der Zugbewehrung bis zum Abstand 3d von der Stütze

 $\rho_{1x,zug} = 31.42/19 \cdot 10^{-2} = 0.01654$

 $\rho_{1y,zug} = 31.42/19 \cdot 10^{-2} = 0.01654$

 $\rho_{1,zug} = sqrt(0.01654 \cdot 0.01654) = 0.01654$

4.1. Bemessungssituation ständig und vorübergehend (LK 1)

 $C_{Rd,c} = 0.18/1.5 = 0.12$

 $\rho_{1,zug,max} = Minimum von (0.02, 0.5.19.83/434.78) = 0.02 > 0.0165$

 $v_{min} = 0.0525/1.5 \cdot 2^{3/2} \cdot 35^{0.5} = 0.586 \text{ N/mm}^2$

 $V_{Rd,c} = 0.12 \cdot 2 \cdot (100 \cdot 0.01654 \cdot 35)^{1/3} = 0.928 \text{ N/mm}^2 > 0.586 \text{ N/mm}^2$

0.657 $\text{N/mm}^2 < 0.928 \text{ N/mm}^2 \Rightarrow \text{keine zusätzliche Bewehrung erforderlich}$

4.2. Bemessungssituation außergewöhnlich (LK 2)

 $C_{Rd,c} = 0.18/1.3 = 0.138$

 $\rho_{1,zug,max} = Minimum von (0.02, 0.5.22.88/500) = 0.02 > 0.0165$

 $V_{min} = 0.0525/1.3 \cdot 2^{3/2} \cdot 35^{0.5} = 0.676 \text{ N/mm}^2$

 $V_{Rd,c} = 0.138 \cdot 2 \cdot (100 \cdot 0.01654 \cdot 35)^{1/3} = 1.071 \text{ N/mm}^2 > 0.676 \text{ N/mm}^2$

1.281 N/mm² > 1.071 N/mm² \Rightarrow Durchstanzbewehrung erforderlich

Maximaltragfähigkeit

 $v_{Rd,max} = 1.4 \cdot v_{Rd,c}$

 $v_{Rd,max} = 1.4 \cdot 1.071 = 1.5 \text{ N/mm}^2$

1.281 $N/mm^2 < 1.5 N/mm^2 \Rightarrow v_{Ed,crit}$ kann mit Durchstanzbewehrung aufgenommen werden

Grundwert der erforderlichen Durchstanzbewehrung

 $A_{\text{SW,crit}} = (v_{\text{Ed}} - 0.75 \cdot v_{\text{Rd,c}}) \cdot s_r \cdot u_1 / (1.5 \cdot f_{\text{ywd,ef}})$

 $f_{ywd,ef} = 250+0.25 d \le f_{ywd}$

 $f_{ywd,ef} = 250+0.25\cdot190 = 297.5 \text{ N/mm}^2$

 $f_{ywd} = 500/1 = 500 \text{ N/mm}^2 > 297.5 \text{ N/mm}^2$

 $sr = 0.75 \cdot 19 = 14.3 \text{ cm}$

 $A_{sw,crit} = (1.281 - 0.75 \cdot 1.071) \cdot 14.3 \cdot 3.85 / (1.5 \cdot 297.5) \cdot 100 = 5.86 \text{ cm}^2$

5. Bemessung für maßgebendes Lastkollektiv 2

5.1. Bügelbewehrungsreihen

 $Asw.erf = \kappa sw.Asw.crit$

 $A_{sw,min} = 0.08/1.5 \cdot f_{ck}^{0.5}/f_{yk} \cdot s_{r,max} \cdot u$

Stabdurchmesser

 $\max \varnothing_{\text{SW}} \le 0.05 \cdot 190 \approx 10 \text{ mm} \Rightarrow \text{gewählt } \varnothing 10$

Hinweis zum Einbau von 10er Bügeln: beide Bewehrungslagen müssen umfasst werden

Nr	K sw	Asw,erf	Sr	1 _w	u	Asw,min	min n	gewäh1t	St	Asw, vorh
	-	Cm ²	cm	cm	m	Cm ²	-	Schenkel	cm	Cm ²
1	2.50	14.65	9.5	9.5	2.32	2.08	9	20 Ø 10	11.6	15.71
2	1.40	8.20	14.3	23.8	3.18	2.86	12	12 Ø 10	26.5	9.42
3	1.00	5.86	14.3	38.0	3.85	3.46	14	14 Ø 10	27.5	11.00
4	1.00	5.86	14.3	52.3	4.03	3.63	11	12 Ø 10	33.6	9.42
5	1.00	5.86	14.3	66.5	4.22	3.80	12	12 Ø 10	35.2	9.42
6	1.00	5.86	14.3	80.8	4.41	3.97	12	12 Ø 10	36.8	9.42
7	1.00	5.86	14.3	95.0	4.60	4.14	13	14 Ø 10	32.8	11.00
8	1.00	5.86	14.3	109.3	4.79	4.30	13	14 Ø 10	34.2	11.00
9	1.00	5.86	14.3	123.5	4.97	4.47	14	14 Ø 10	35.5	11.00
10	1.00	5.86	14.3	137.8	5.16	4.64	14	14 Ø 10	36.9	11.00

Zulässige tangentiale Abstände der Schenkel:

 $st \le 28.5$ cm in der 1., 2. und 3. Reihe

 $st \le 38.0$ cm in der 4., 5., 6., 7., 8., 9. und 10. Reihe

Hinweis zur Lagetoleranz:

 $Nach\ [3]\ sind\ r\overset{\circ}{a}diale\ Abweichungen\ bis\ \pm0.2d\ (hier\ \pm3.8cm)\ bez\"{uglich}\ der\ theoretischen\ Schnittf\"{u}hrung\ erlaubt.$ Wichtig ist dabei, dass die erste Reihe immer zwischen 0.3d und 0.5d liegt.

 κ_{SW} - Anpassungsfaktor nach [2], NCI zu 6.4.5 (1) s $_{\rm f}$ - radialer Abstand zur vorherigen Reihe $l_{\rm W}$ - Abstand zum Stützenrand u - Länge des wirksamen Rundschnittes Asw,min - erf. Mindestdurchstanzbewehrung der gesamten Reihe s $_{\rm f}$ - mittlerer tangentialer Abstand zur vorherigen Reihe

st - mittlerer tangentialer Abstand der Schenkel im Schnitt

5.2. Nachweis im äußeren Rundschnitt

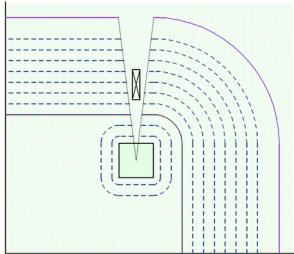
Querkrafttragfähigkeit im Abstand 1.5d von der letzten Bewehrungsreihe nachweisen

 $v_{Rd,c} = C_{Rd,c} \cdot k \cdot (100 \cdot \rho_{l,zug} \cdot f_{ck})^{1/3} \ge v_{min} [N/mm^2]$ $C_{Rd,c} = 0.15/\gamma_C$

Umfang des äußeren Rundschnittes

 $l_{w,out} = 137.8 + 1.5 \cdot 19 = 166.3 \text{ cm} \Rightarrow u_{out} = 5.54 \text{ m}$

Maßgebende Schubspannung


 $VEd,out = 1.281 \cdot 3.85 / 5.54 = 0.889 \text{ N/mm}^2$

Querkraftragfähigkeit

 $C_{Rd,c} = 0.15/1.3 = 0.115$

 $VRd,c = 0.115 \cdot 2 \cdot (100 \cdot 0.01654 \cdot 35)^{1/3} = 0.893 \text{ N/mm}^2 > 0.676 \text{ N/mm}^2$

$0.889 \text{ N/mm}^2 < 0.893 \text{ N/mm}^2 \Rightarrow \text{Nachweis erbracht}$

kritischer Rundschnitt Bügelbewehrung äußerer Rundschnitt

Mindestlängsbewehrung zur Sicherstellung der Querkrafttragfähigkeit 6. entsprechend [1] Tabelle NA.6.1.1

Zugseite	Richtung	η	MEd,min	aso,min	asu,min	Verteilungsbreite
		=	kNm/m	cm²/m	cm²/m	m
oben	х	0.500	325.00	43.04	19.76	(je m Plattenbreite)
	у	0.500	325.00	43.04	19.76	(je m Plattenbreite)
unten	x	0.500	325.00	19.76	43.04	(je m Plattenbreite)
	у	0.500	325.00	19.76	43.04	(je m Plattenbreite)

 $[\]eta$ - Momentenbeiwert $~~m_{Ed,min} = \eta \cdot V_{Ed}$ - Mindestbemessungsmoment

Literatur und Normen:

[1] DIN EN 1992-1-1: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken, Teil 1-1, Januar 2011 [2] DIN EN 1992-1-1/NA: Nationaler Anhang - National festgelegte Parameter - Eurocode 2, Teil 1-1, April 2013 [3] DAfStb Heft 525: Erläuterungen zu DIN 1045-1, 2. überarb. Aufl., Beuth, 2010