
POS. 2: WAGENKNECHT 2.6.2

Querschnittsnachweis EC 3-1-8 (12.10), NA: Deutschland

Eingabeprotokoll

Stahl

Stahlaüte S235

Materialsicherheitsbeiwert

Beanspruchbarkeit von Querschnitten $\gamma_{M0} = 1.00$

Geometrie

Profil HE400A

Tragfähigkeit

elastischer Spannungsnachweis, Berechnung als dünnwandiger Querschnitt

zul. Normal-, Schub-, Vergleichsspannung: $\sigma_{x,Rd} = 235.0 \text{ N/mm}^2$, $\tau_{Rd} = 135.7 \text{ N/mm}^2$, $\sigma_{y,Rd} = 235.0 \text{ N/mm}^2$

Schnittgrößen bezogen auf die Querschnittsachsen

σ-erzeugende Kraftgrößen (N, M) wirken im Schwerpunkt, τ-erzeugende Kraftgrößen (V, Tt) wirken im Schubmittelpunkt Lk 1: $N_{Ed} = -1190.00 \text{ kN}, M_{y,Ed} = 225.00 \text{ kNm}, V_{z,Ed} = 370.00 \text{ kN}, M_{z,Ed} = -26.00 \text{ kNm}, V_{y,Ed} = -180.00 \text{ kN}$

Hinweise

Beulen wird nicht untersucht.

2. Lk 1

2.1. Querschnittsnachweis

Schnittgrößen: N = -1190.00 kN, $M_y = 225.00 \text{ kNm}$, $V_z = 370.00 \text{ kN}$, $M_z = -26.00 \text{ kNm}$, $V_y = -180.00 \text{ kN}$

2.1.1. elastischer Spannungsnachweis

```
elastischer Spannungsnachweis für N = -1190.00 kN, My = 225.00 kNm, Vz = 370.00 kN, Mz = -26.00 kNm
  V_y = -180.00 \text{ kN}
```

```
elastische Spannungen: max |\sigma_x| = 217.75 \text{ N/mm}^2, max \tau = 95.50 \text{ N/mm}^2, max \sigma_v = 218.45 \text{ N/mm}^2
```

```
bei y = 150.0 \text{ mm}, z = 195.0 \text{ mm}:
                                                                           \sigma_X = 68.07 \text{ N/mm}^2, \tau = 0.00 \text{ N/mm}^2, \sigma_V = 68.07 \text{ N/mm}^2
max σ<sub>x</sub>
                bei y = -150.0 mm, z = -195.0 mm: \sigma_X = -217.75 N/mm<sup>2</sup>, \tau = 0.00 N/mm<sup>2</sup>, \sigma_V = 217.75 N/mm<sup>2</sup>
min \sigma_x
                bei y = 0.0 \text{ mm}, z = 0.0 \text{ mm}:
                                                                           \sigma_X = -74.84 \text{ N/mm}^2, \tau = 95.50 \text{ N/mm}^2, \sigma_V = 181.55 \text{ N/mm}^2
max τ
                bei y = 0.0 \text{ mm}, z = -185.5 \text{ mm}:
                                                                           \sigma_X = -167.45 \text{ N/mm}^2, \tau = 81.00 \text{ N/mm}^2, \sigma_V = 218.45 \text{ N/mm}^2
max σ<sub>v</sub>
```

zul. Vergleichsspannung: σv,Rd = 235.0 N/mm²

Nachweis: $\sigma_V = 218.45 \text{ N/mm}^2 < \sigma_{V,Rd} = 235.00 \text{ N/mm}^2 \Rightarrow U_{\sigma} = 0.930 < 1 \text{ ok}$

$\begin{array}{l} Normal spannungen \; \sigma_X \; [N/mm^2] \\ min \; \sigma_X = \text{-}217.8, \; \; max \; \sigma_X = \text{68.1} \end{array}$ Schubspannungen τ [N/mm²] max τ = 95.5 -174 9.55 -136 18 -96.8 26.5 -58.1 35 -19.4 43.5 19.4 52 58.1 60.5 96.8 69 136 77.5 174 85.9 $\begin{array}{l} Ausnutzung \ U_{\sigma} \\ max \ U_{\sigma} = 0.930 \end{array}$ Vergleichsspannungen σ_V [N/mm²] $max \sigma_V = 218.5$ 0.1 0.2 0.3 0.4 34.2 52.4 70.6 88.8 107 0.5 0.6 0.7 125 143 162 8.0 180 0.9 198

Spannungen, Ausnutzungen

у	Z	σχ	τ	σν	Uσ
mm	mm	N/mm²	N/mm^2	N/mm^2	
-300.0	0.0	-217.83	0.00	217.83	0.927
-150.0	9.5	-167.55	81.00	218.53	0.930
-144.5	195.0	-73.19	95.50	180.87	0.770
0.0	390.0	68.13	0.00	68.13	0.290

y,z: Knotenkoordinaten; $\sigma_{X,\tau,\sigma_{V}}$: Spannungen; U_{σ} : Spannungsausnutzung

3. Endergebnis

Maximale Ausnutzung: Tragfähigkeit max U = 0.930 < 1 ok

Nachweis erbracht