POS. 1: DAST IR 93 AUFGESCHW. PLATE

detailed problems acc. to Eurocode 3, EC 3-6 (12.10), NA: Deutschland

1. input report

steel grade

steel grade S235

cross-section

beam: section HE300A

loading

internal forces and moments at limit state of resistance (ULS):

Lk 1: $V_{z,Ed} = 505.8 \text{ kN}$

transverse loading on top flange:

vertical single load Fz,Ed,ULS = 106.80 kN by a welded plate

plate thickness $t_p = 0.0$ mm, weld thickness $a_w = 0.0$ mm

verification at end of beam at c = 0.0 mm

partial safety factors for material

resistance of members in stability failure $\gamma_{M1} = 1.10$

4H-EC3LK version: 11/2016-1f

2. verification der local loading

assumption: flange induced web buckling is excluded.

assumption: plated structures-/shear buckling is excluded.

cross-sectional properties: $A = 112.53 \text{ cm}^2$, $z_s = 145.0 \text{ mm}$, $l_y = 18263.71 \text{ cm}^4$, $y_s = -0.0 \text{ mm}$, $l_z = 6309.56 \text{ cm}^4$

feed length of load due to the welded plate $s_s = t_p + 2.828 \cdot a_w = 0.0 \text{ mm}$ effective loading length leff = ss + 2·tf = 28.0 mm

2.1. buckling of transverse loading (ULS)

slenderness $\lambda_F = (F_y/F_{cr})^{1/2} = 0.363$, $F_y = 117.5 \text{ kN}$

reduction factor $\chi F = 1.000$

resistance of buckling $F_{z,Rd} = f_y \cdot L_{eff} \cdot t_w / \gamma_{M1} = 106.80 \text{ kN}$, $L_{eff} = \chi F \cdot l_y = 58.8 \text{ mm}$, $l_y = 58.8 \text{ mm}$

verification: Fz,Ed/Fz,Rd = 1.000 ≤ 1 ok

3. final result

maximum utilization: $max U = 1.000 \le 1 ok$

verification succeeded