
Seite bearbeitet Juli 2023	Kontakt	₫ • z	zur Hauptseite	e <i>4H</i> -ALFA3D	i .	Bestelltext	2
weiterführende Detailinformationen							
grafisches EingabemodulErgebnisvisualisierung	_ :::			- In the second			Ĺ
Infos auf dieser Seite						als pdf	_
Systembeschreibung	i • Lastda	rstellung		100		nisse	=

Im Folgenden sind einige farbige Fragmente der 4H-ALFA3D-Druckliste zusammengestellt.

• Druckfragment Systembeschreibung

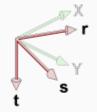
Statische Berechnung eines Faltwerks nach der FE-Methode

Koordinatensysteme:

ortsfestes, globales

3D-Koordinatensystem

X und Y spannen eine horizontale Fläche auf. Z zeigt in Richtung Erdmittelpunkt.



Jede definierte Ebene hat ihr eigenes

Koordinatensystem der Ebene x-y-z

x und y spannen die Ebene auf. x liegt immer parallel zur horizontalen XY-Ebene. Der Anteil von y auf Z ist stets ≥0. (näheres siehe: Beschreibung der Ebenen)

Flächenpositionen übernehmen das Koordinatensystem der Ebene, in der sie definiert sind.

Das punktbezogene r-s-t-System

entsteht aus einer benutzerdefinierten Drehung des X-Y-Z-Systems um die definierten Achsen.

Für alle Punkte, deren r-s-t-System nicht explizit vorgegeben wurde, gilt: r-s-t = X-Y-Z

(näheres siehe: Koordinatensysteme der Lagerpunkte)

Das Linienlagerkoordinatensystem e-f-g

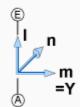
ist einer Ebene zugeordnet, e zeigt stets vom Anfangspunkt der Linie zum Endpunkt, f liegt in der Ebene und g zeigt in z-Richtung. Mit α≠0 können f und g um e verdreht werden. Die Linienlagerung kann sich auch auf das I-m-n-Stabsystem beziehen. wenn die Linie als Stab definiert wurde.

Bei senkrecht stehenden Stützen zeigt

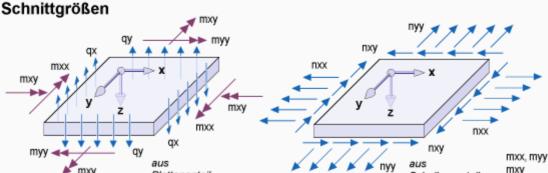
(näheres siehe: Linienlager)

I-m-n ist das Stabkoordinatensystem.

Bei allen Stäben zeigt I vom Anfangspunkt der Linie zum Endpunkt.


Bei ebenenbezogenen Stäben (Unter- und Überzüge) liegt m in der Ebene und n zeigt in z-Richtung (vgl: e-f-g mit α=0).

Durch den exzentrischen Anschluss ist die mittragende Wirkung der angeschlossenen Faltwerksposition auf natürliche Weise gegeben.


näheres siehe: Erläuterungen zu den Stabtypen Bei freien Stäben (ohne Ebenenbezug) wird zwischen Balken und Stützen unterschieden.

m in Richtung Y.

Bei horizontal bzw. schräg liegenden Balken liegt m parallel zur horizontalen XY-Ebene. Der Anteil von n auf Z ist >0.

Bei freien Stäben können m und n durch einen Winkel α um I verdreht werden.

Scheibenanteil qx, qy nxx, nyy

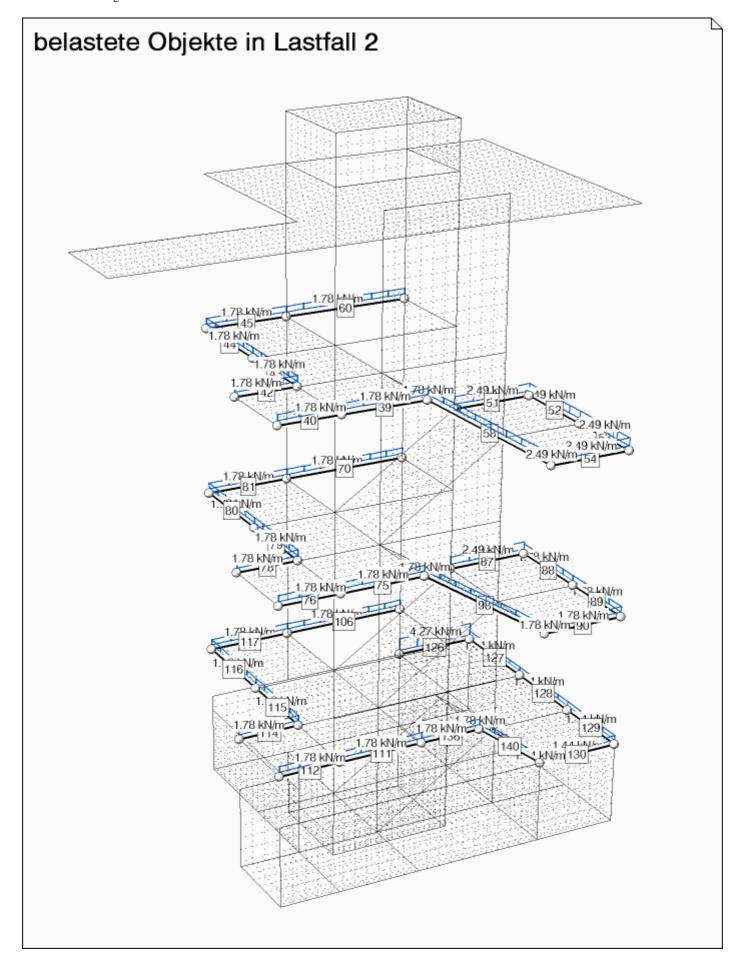
nxy

mxx, myy Biegemomente [kNm/m] Drillmomente Querkräfte Normalkräfte

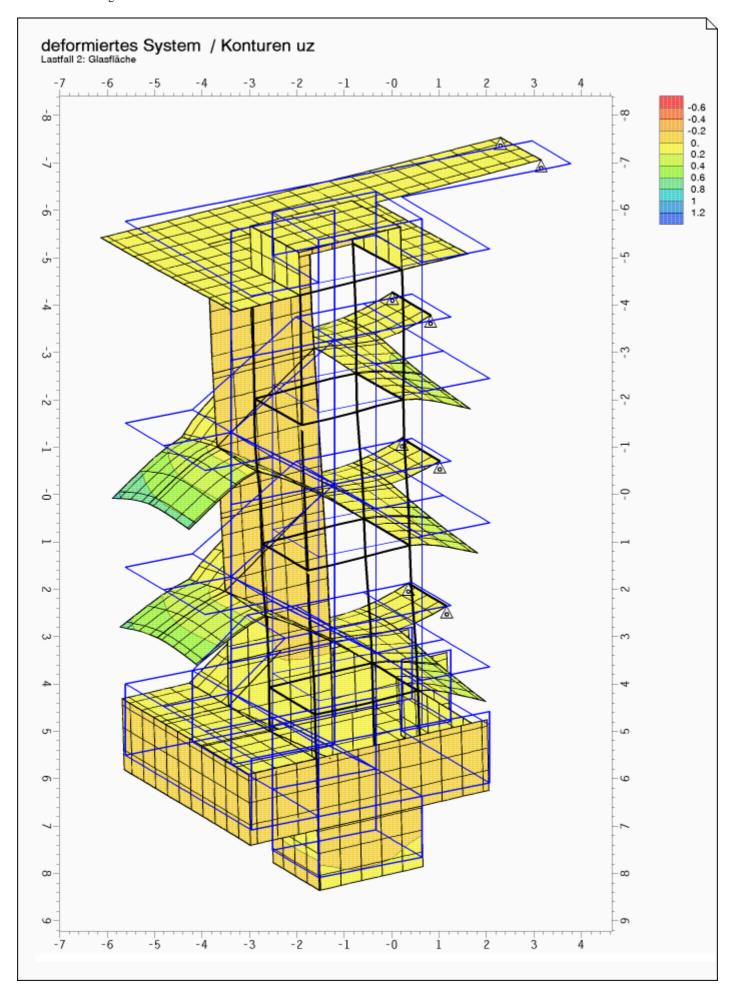
Schubkräfte

[kNm/m] [kN/m] [kN/m] [kN\m]

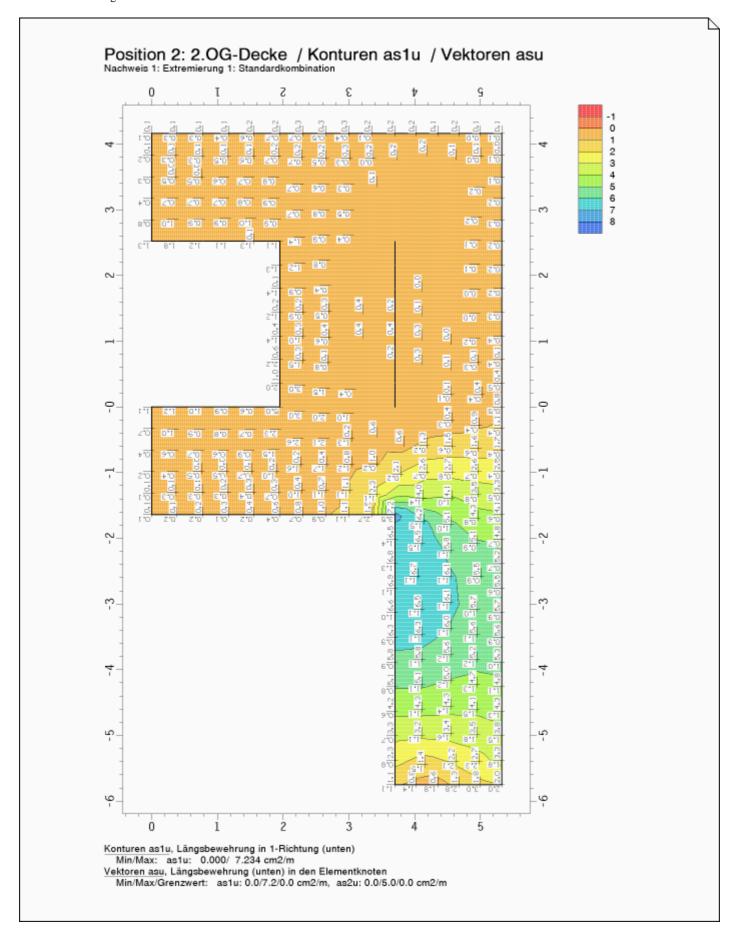
sonstige Ergebnisse


Verformungen: ux, uy, uz Verschiebungen [mm] vx, vy, vz Verdrehungen [%] Gbz Bodenpressungen [kN/m²]

Einzellager: APr, APs, APt Knotenlagerkräfte [kN] AMr, AMs, AMt Knotenlagermomente [kNm] ape, apf, apg Linienlagerkräfte [kN/m] ame, amf, amg Linienlagermomente [kNm/m] Linienlager:


Plattenanteil

N Normalkräfte [kN] $Q\eta$, $Q\zeta$ Querkräfte [kN] T Torsionsmomente [kNm] $M\eta$, $M\zeta$ Biegemomente [kNm] (hier: ξ , η , $\zeta = I$, m, n) Stäbe:


Druckfragment Lastdarstellung

• Druckfragment Lastfallergebnisse

• Druckfragment Bemessungsergebnisse

